
Wild Magic Version 4.10

Installation Manual and Release Notes

Document Version 4.10.1
November 19, 2009

Contents

1 Introduction 4

1.1 About This Document . 4

1.2 Copying the Distribution to Your Machine . 4

1.3 Environment Variables . 5

1.3.1 Microsoft Windows 7 and Windows Vista . 6

1.3.2 Microsoft Windows XP . 8

1.3.3 Linux . 10

1.3.4 Macintosh . 10

1.4 Automatic Builds . 11

1.4.1 Microsoft Windows 7, Windows Vista, and Windows XP 11

1.4.2 Linux, Mingw, and Cygwin . 11

1.4.3 Macintosh . 12

1.5 Compiler Support for Windows Dynamic Link Libraries . 12

1.6 Finding Windows Dynamic Link Libraries at Run-Time . 14

2 Prerequisites and Portability 15

2.1 Microsoft Windows 7, Windows Vista, Windows XP . 15

2.1.1 Microsoft Visual Studio .NET 2003 (VC71) . 15

2.1.2 Microsoft Visual Studio .NET 2005 (VC80) . 15

2.1.3 Microsoft Visual Studio .NET 2008 (VC90) . 15

2.1.4 MinGW . 16

2.1.5 Cygwin . 16

2.1.6 Borland C++ Builder and Intel Compilers . 16

2.1.7 DirectX . 16

1

2.1.8 OpenGL and Extension Wrappers . 17

2.1.9 NVIDIA’s Cg Toolkit . 19

2.2 Linux . 21

2.3 Macintosh . 21

2.4 Platform Differences . 21

3 Compiling the Distribution 21

3.1 Microsoft Windows 7, Windows Vista, or Windows XP with Visual Studio 22

3.1.1 Automatic Compilation . 22

3.1.2 Manual Compilation . 23

3.1.3 Build Configurations . 24

3.1.4 Precompiled Headers . 25

3.1.5 Naming of the Executables . 26

3.1.6 Running the Samples Based on Dynamic Libraries . 26

3.2 Microsoft Windows 7, Windows Vista, or Windows XP and MINGW or CYGWIN 26

3.2.1 Automatic Compilation . 26

3.2.2 Manual Compilation . 27

3.3 Linux . 27

3.3.1 Automatic Compilation . 27

3.3.2 Manual Compilation . 28

3.4 Macintosh . 28

3.4.1 Automatic Compilation . 28

3.4.2 Manual Compilation . 29

4 Sample Applications 30

5 Tools 30

5.1 BitmapFontCreator . 30

5.2 Bmp24ToWmif . 31

5.3 CreateNormalMap . 31

5.4 GenerateProjects . 31

2

5.5 ScenePrinter . 31

5.6 Wm4Installer . 31

5.7 WmifToBmp24 . 31

5.8 WmifViewer . 32

6 Updates and Known Problems 32

3

1 Introduction

1.1 About This Document

Please read this document before attempting to compile and run the libraries and applications! Each
supported platform (Microsoft Windows, Linux, Macintosh) has prerequisites that must be met in order for
Wild Magic Version 4 (WM4) and its tools to compile, link, and run successfully. Once the prerequisites
are met, the projects must be compiled in a particular order. Standard support questions are about issues
that arise when the prerequisites are not met, when the projects are compiled in the wrong order, or when
incompatible build configurations are used for the core libraries and the sample applications.

Other information of interest is available here, so browse the entire document before starting the installation.
Generally, you should also check our website, Geometric Tools, for updates, bug fixes, new features, and
other materials. The update history page always has a date for the last modification, so you should be able
to track what you have or have not downloaded.

NOTE. We no longer support Microsoft Visual Studio 6 or Microsoft Visual Studio 7.0 (.NET 2002). There
are projects for Microsoft Visual Studio 7.1 (.NET 2003), Microsoft Visual Studio 8.0 (.NET 2005) and
Microsoft Visual Studio 9.0 (.NET 2008).

1.2 Copying the Distribution to Your Machine

Wild Magic versions 4.2 through 4.9 used the GNU Lesser General Public License (LGPL). Wild Magic 4.10
now uses the more liberal Boost License. The WildMagic4p10.zip file has the full distribution of version
4.10 of the engine. You should unzip this archive to a new directory tree; that is, do not unzip this on top
of an older version of Wild Magic. You may unzip the top-level folder to any location you prefer on your
hard drive. The projects all use relative paths and do not rely on the top-level directory being located at the
root of the drive. The Macintosh distribution has some script files (.sh extension) that must be assigned
the correct permissions. These will be discussed later in the section on compiling.

4

http://www.geometrictools.com/

The folder hierarchy for Wild Magic 4.10 is

GeometricTools
WildMagic4

LibFoundation // core system and mathematical support
LibGraphics // platform-independent graphics system
LibImagics // platform-independent image processing system
LibPhysics // platform-independent physics system
LibRenderers

Dx9Renderer // Direct3D-based renderer
OpenGLRenderer // OpenGL-based renderer
SoftRenderer // software renderer

LibApplications
Dx9Application // applications using Direct3D rendering
OpenGLApplication // applications using OpenGL rendering
SoftApplication // applications using software rendering

SampleFoundation
SampleGraphics
SampleImagics
SamplePhysics
SDK

Include
Library

Debug
DebugDLL
DebugMemory
NoPCH
Release
ReleaseDLL
ReleaseMemory

ToolsUtility

1.3 Environment Variables

WM4 allows relative paths and supports a list of paths for searching for data files. To make this work, the
application layer accesses an environment variable, WM4 PATH, whose value is set to the installation location
of WM4. Each platform has a different approach to setting an environment variable. The following examples
are based on the assumption that the top-level folder GeometricTools was placed in the root of a hard drive
(Windows, Mingw, Cygwin) or in the root of the home directory (Linux, Macintosh). You will have to
modify these if you place the top-level folder elsewhere.

If you are running Microsoft Visual Studio and change an environment variable or add new ones, you need to
exit out of Visual Studio and restart it. When Microsoft Visual Studio starts, it loads the current environment
variables and makes copies. The restart is necessary for it to detect your changes.

5

1.3.1 Microsoft Windows 7 and Windows Vista

You may set an environment variable by using the Control Panel. In the Control Panel window, select the
“System and Maintenance” link. In the window that appears, select the “System” link. On the left side of
the window that appears, select the “Advanced system settings” link. You will see the dialog

Select the Environment Variables button. You will see the dialog

6

where yourlogin will actually be your user name. You may add a new environment variable to apply only
to your account or to the entire system as a whole. We add the WM4 PATH variable to the entire system. In
this case, select the New button under the System Variables listing. The following dialog appears

Enter in the Variable name edit control the symbol WM4 PATH. Enter in the Variable value edit control the
location of the source code distribution. For example, if the top-level folder GeometricTools was placed in
the root of the C drive, you would enter

C:\GeometricTools\WildMagic4

7

1.3.2 Microsoft Windows XP

You may set an environment variable by using the Control Panel. Launch the System dialog and select the
Advanced tab. You will see the dialog

Select the Environment Variables button. You will see the dialog

8

where YOURLOGIN will actually be your user name. You may add a new environment variable to apply only
to your account or to the entire system as a whole. We add the WM4 PATH variable to the entire system. In
this case, select the New button under the System Variables listing. The following dialog appears

Enter in the Variable name edit control the symbol WM4 PATH. Enter in the Variable value edit control the
location of the source code distribution. For example, if the top-level folder GeometricTools was placed in
the root of the C drive, you would enter

C:\GeometricTools\WildMagic4

9

Mingw and Cygwin automatically set up their environments to use the Windows environment variables, so
there is nothing special you must do within a window launched by Mingw or by Cygwin.

1.3.3 Linux

We use Red Hat Fedora Core 9 using a Bash shell and define the following variable in the .bashrc file,

WM4_PATH=/home/YOURLOGIN/GeometricTools/WildMagic4 ; export WM4_PATH

You must replace YOURLOGIN by your actual login name. For example, if you started with the default .bashrc
file, you would modify it to look like

.bashrc
WM4_PATH=/home/YOURLOGIN/GeometricTools/WildMagic4 ; export WM4_PATH

User specific aliases and functions

Source global definitions
if [-f /etc/bashrc]; then

. /etc/bashrc
fi

The actual path depends on YOURLOGIN and where you copied the Wild Magic distribution. The .bashrc
file is processed when you login. However, if you modify it, you may process it by executing

source .bashrc

from a terminal window. For other versions of Linux or other shells, consult your user’s guide on how to
create an environment variable.

1.3.4 Macintosh

To have environment variables automatically loaded when logging in, you need to have a file

/Users/YOURLOGIN/.MacOSX/environment.plist

whose contents are

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>WM4_PATH</key>

10

<string>/Users/YOURLOGIN/GeometricTools/WildMagic4</string>
</dict>
</plist>

You must replace YOURLOGIN by your actual login name. A skeleton file containing this information is in
the GeometricTools/WildMagic4 folder in the distribution. If you already have an environment.plist
file on your machine, you will have to edit it and add the path information. If you add or modify
environment.plist, you should log out and then log in so that the new definitions are loaded.

1.4 Automatic Builds

In order to allow you to build the libraries and applications automatically, each platform provides batch or
script files to encapsulate the process.

1.4.1 Microsoft Windows 7, Windows Vista, and Windows XP

The top-level folder GeometricTools/WildMagic4 contains an executable named Wm4Installer.exe. Its
syntax for execution is

Wm4Installer -m compiler -g renderer -c configuration

where compiler is in (msvc71,msvc80,msvc80e,msvc90,msvc90e), renderer is in (opengl,directx,soft), and
configuration is in (debug,debugdll,debugmem,release,releasedll,releasemem). For example, to build with
Microsoft Visual Studio .NET 2008 (VC90), OpenGL renderer and applications, and the release configura-
tion, you would use

Wm4Installer -m msvc90 -g opengl -c release

The installer just runs the compiler in command-line mode. The locations of the compiler executables are
stored in the Windows Registry and the installer looks up this information. The registry locations for the var-
ious compiles are all different, which explains the compiler options, msvc71, msvc80 (Professional), msvc80e
(Express), msvc90 (Professional), and msvc90e (Express). The Express Edition is freely downloadable.

1.4.2 Linux, Mingw, and Cygwin

These systems use the same makefiles. The top-level make file is makefile.wm4, is located in the folder
GeometricTools/WildMagic4, and has the following syntax:

make -f makefile.wm4 CFG={config} SYS={system}, GRF={graphics}

where config is one of (Debug, Release, DebugMemory, ReleaseMemory, DebugDynamic, ReleaseDynamic),
system is one of (linux, mingw, cygwin), and graphics is one of (OpenGL, Soft). For example, to build on
Linux, OpenGL renderer and applications, and the release configuration, you would use

11

http://msdn.microsoft.com/vstudio/express/visualc/default.aspx

make -f makefile.wm4 CFG=Release SYS=linux GRF=OpenGL

To build on Mingw, software renderer, and the debug memory configuration, you would use

make -f makefile.wm4 CFG=DebugMemory SYS=mingw GRF=Soft

Please be aware that these systems are case sensitive. You must use the upper- and lower-case characters,
as shown. For example, CFG=release will not work. You must capitalize the ‘r’ to be ‘R’.

1.4.3 Macintosh

A single top-level script is used to build the WM4 distribution. Its name is MacBuildWm4.sh and is located
in the folder GeometricTools/WildMagic4. This file must be executed from a Terminal window. The syntax
is

./MacBuildWm4.sh graphics config libtype buildtype

where graphics is one of (Agl, Soft), config is one of (Debug, Release), libtype is one of (Static, Dynamic,
Memory), and buildtype is one of (build, clean). The script executes the command-line version of Xcode,
namely, xcodebuild. For example, to build the projects for OpenGL rendering, release configuration, and
dynamic libraries, you would use

./MacBuildWm4.sh Agl Release Dynamic build

Please be aware that these systems are case sensitive. You must use the upper- and lower-case characters,
as shown.

The sample applications should be run from within the Xcode projects, because the executables are buried
a few levels deep in the build subfolders of the project folders. The path processing to locate data files
depends on this folder structure.

1.5 Compiler Support for Windows Dynamic Link Libraries

To support dynamic link libraries (DLLs) under Microsoft Windows, the source code has symbols that need
to be exported from the libraries and imported into the applications. Special keywords exist in order for the
compiler to generate or locate these symbols,

__declspec(dllexport) // for exporting symbols
__declspec(dllimport) // for importing symbols

The problems with such a mechanism for dynamic libraries is that the header files must use dllexport for
exporting and dllimport for importing. Which of these it is depends on the context in which the header file
is processed, so these keywords may not be hard-coded into the source code. For example, the Foundation
library project must export the symbols but any client project that links to the Foundation library must
import the symbols. The Foundation library has a file named Wm4FoundationLIB.h, whose contents are

12

// For the DLL library.
#ifdef WM4_FOUNDATION_DLL_EXPORT
#define WM4_FOUNDATION_ITEM __declspec(dllexport)

// For a client of the DLL library.
#else
#ifdef WM4_FOUNDATION_DLL_IMPORT
#define WM4_FOUNDATION_ITEM __declspec(dllimport)

// For the static library.
#else
#define WM4_FOUNDATION_ITEM

#endif

The LibFoundation project includes in its list of preprocessor definitions the symbol

WM4_FOUNDATION_EXPORT_DLL

During compilation of the Foundation library, __declspec(dllexport) is active, which lets the compiler
know that the library symbols must be tagged for export. The LibGraphics project is a client of the
LibFoundation library and includes in its list of preprocessor definitions the symbol

WM4_FOUNDATION_IMPORT_DLL

During compilation of the Graphics library, __declspec(dllimport) is active, which lets the compiler
know that the Foundation library symbols used by the Graphics library are being imported. The symbols
are accessible because the LibGraphics project links in the DLL library stub that was generated by the
LibFoundation project.

The LibGraphics project itself has symbols that need to be exported for use by clients. The clients themselves
must specify that they need to import the symbols. Thus, you will find a file Wm4GraphicsLIB.h in the
LibGraphics project, whose contents are

// For the DLL library.
#ifdef WM4_GRAPHICS_DLL_EXPORT
#define WM4_GRAPHICS_ITEM __declspec(dllexport)

// For a client of the DLL library.
#else
#ifdef WM4_GRAPHICS_DLL_IMPORT
#define WM4_GRAPHICS_ITEM __declspec(dllimport)

// For the static library.
#else
#define WM4_GRAPHICS_ITEM

#endif

13

It is insufficient to have a single file to control whether importing or exporting is active and that works for
multiple libraries, because a client can have the need to import and export symbols. To export symbols, the
project defines WM4 GRAPHICS DLL EXPORT. To import symbols, the client defines WM4 GRAPHICS DLL IMPORT.

Each library project in the WM4 distribution defines such a header file to enable importing and exporting
of symbols. The LibImagics project has associated preprocessor definitions

WM4_IMAGICS_IMPORT_DLL, WM4_IMAGICS_EXPORT_DLL

The LibPhysics project has associated preprocessor definitions

WM4_PHYSICS_IMPORT_DLL, WM4_PHYSICS_EXPORT_DLL

All the projects under the LibRenderer folder have associated preprocessor definitions

WM4_RENDERER_IMPORT_DLL, WM4_RENDERER_EXPORT_DLL

It is important to understand that you must include one or more of these preprocessor definitions in your
projects when you want to use DLL versions of the WM4 libraries.

1.6 Finding Windows Dynamic Link Libraries at Run-Time

The compiled WM4 libraries are stored in the following directories:

GeometricTools/WildMagic4/SDK/Library/Debug
DebugDLL
DebugMemory
Release
ReleaseDLL
ReleaseMemory

The subdirectories ending in DLL contain the dynamic link libraries. The names of the debug DLLs end in
a ‘d’, but the release DLL names do not. For example, there are libraries

GeometricTools/WildMagic4/SDK/Library/DebugDLL/Wm4Foundation80d.dll
GeometricTools/WildMagic4/SDK/Library/ReleaseDLL/Wm4Foundation80.dll

When a sample application is compiled and linked to use the core dynamic libraries, the run-time environment
must find them. The current working directory is checked first. If required DLLs cannot be found in the
current working directory, the directories in the PATH environment variable are searched for the DLLs. To
support testing and running of all possible configurations, we add a couple of paths to the PATH environment
variable. These paths use the WM4 PATH environment variable discussed previously in this document. That
discussion mentioned how to create new environment variables for Windows, so you may add the new
variables accordingly. The PATH environment variable may be modified using the same dialogs. We have in
our system environment:

14

WM4_PATH=C:\GeometricTools\WildMagic4
WM4_PATH_BIN=C:\GeometricTools\WildMagic4\Bin
WM4_PATH_DEBUG_DLL=C:\GeometricTools\WildMagic4\SDK\Library\DebugDLL
WM4_PATH_RELEASE_DLL=C:\GeometricTools\WildMagic4\SDK\Library\ReleaseDLL

This assumes the distribution is located in the root of the C drive. Modify these as needed based on where
you copied the Wild Magic distribution. We then modify the PATH environment variable to include these.
For example, you can append these to your current path using the syntax

PATH=<currentpath>;%WM4_PATH_BIN%;%WM4_PATH_DEBUG_DLL%;%WM4_PATH_RELEASE_DLL%

2 Prerequisites and Portability

Wild Magic is architected to be portable. Generally, no library will automatically compile, link, and run
when placed on a new platform. If you attempt to compile Wild Magic on platforms other than the ones
we have tested, there might be minor issues that need to be resolved. Some of the tools work only on the
Microsoft Windows platform; for example, 3ds Max is a modeling package that runs on Windows. Any
prerequisites for the platforms and environments on which we have tested Wild Magic are listed in the next
sections.

2.1 Microsoft Windows 7, Windows Vista, Windows XP

We have project files for multiple versions of Microsoft’s Visual C++. We also have makefiles for MinGW
and Cygwin.

2.1.1 Microsoft Visual Studio .NET 2003 (VC71)

We added the suffix _VC71 to the project file names to make it clear they are for version 7.1 of the compiler.

2.1.2 Microsoft Visual Studio .NET 2005 (VC80)

This includes the Professional Edition and Microsoft Visual C++ 2005 Express Edition (VC80). We added
the suffix _VC80 to the project file names to make it clear they are for version 8.0 of the compiler. Microsoft
has made the Express Edition compiler freely available.

2.1.3 Microsoft Visual Studio .NET 2008 (VC90)

This includes the Professional Edition only. We have not yet downloaded and tested the Express Edition.
We added the suffix _VC90 to the project file names to make it clear they are for version 9.0 of the compiler.
Microsoft has made the Express Edition compiler freely available.

15

http://msdn.microsoft.com/vstudio/express/visualc/default.aspx
http://msdn.microsoft.com/vstudio/express/visualc/default.aspx

2.1.4 MinGW

This is the package Minimalist GNU for Windows, which is a freely available download. We have been
successful at building and running Wild Magic 4 using MSYS (1.0.10) and MINGW (4.1.0) with the Wgl
OpenGL renderer.

2.1.5 Cygwin

This is the package Cygwin, which is a freely available download. We have been successful at building and
running Wild Magic 4 using Cygwin 1.5.21_1 with the Wgl OpenGL Renderer.

2.1.6 Borland C++ Builder and Intel Compilers

Some users of Wild Magic Version 2 reported compile problems with Borland’s C++ Builder Studio. We
were able to suggest work-arounds for most of these. Some of the reported errors were apparent bugs in the
compiler but we weres unable to find work-arounds.

We have never tested on Intel compilers.

If anyone wants support for either of these compilers, let us know. If enough users make the request, we will
consider purchasing the compilers.

2.1.7 DirectX

If you plan on compiling the DirectX projects, you must download the DirectX SDK from Microsoft’s website
and install it on your machine. We have had a few support emails about the failure of the DirectX renderer
to compile. In nearly all the cases, the problem is that the user did not even have the DirectX SDK installed.
In the other cases, the user did not have the global paths set up to find the DirectX SDK files. We are using
the DirectX SDK (March 2009).

You must modify the global paths in VC71 for including DirectX headers and libraries. To modify the paths
for VC71, open the development environment. From the menu bar select the item Tools | Options. A
dialog is launched. In the left pane, select the item named Projects to expand it. You will then see an item
under the item named VC++ Directories. Select it. A list of paths is shown. The next figure shows the
state of the dialog after these actions.

16

http://www.mingw.org
http://www.cygwin.com
http://www.borland.com/cbuilder/
http://www.intel.com/cd/software/products/asmo-na/eng/compilers/284132.htm

There is also a drop-down list entitled Show directories for. Select this to be Include files. Scroll to
the bottom of the list of paths and double-click in the white space at the end of the list. You will see a
browse button. Browse to the location you stored the DirectX SDK and find the include directory. On our
machines this is

C:\Program Files\Microsoft DirectX SDK (March 2009)\Include

Move this to the top of the list using the black arrow button on the dialog box. Make a similar modification
by changing the drop-down list to say Library files. On our machines, the location is

C:\Program Files\Microsoft DirectX SDK (March 2009)\Lib\x86

The x86 means the 32-bit version of the SDK. If you have a 64-bit machine, you will need x64 instead. Also
move this item to the top of the list.

The VC80 and VC90 global paths are automatically generated when you install the DirectX SDK (March
2009).

2.1.8 OpenGL and Extension Wrappers

We no longer use GLUT. We used to use GLEW, an OpenGL extension wrapper that is freely downloadable.
Now we have rolled our own extension wrapper. Currently, we support only those ARB and EXT extensions
that are used by Wild Magic. We will add support for the other extensions as needed.

17

http://glew.sourceforge.net/

Our wrapper is designed to call an OpenGL extension function, if it exists, but to ignore it otherwise. This
guarantees that an OpenGL-based application will not crash in an attempt to dereference a null function
pointer. The wrapper also allows you to hook into the system for such things as reporting whether extensions
exist and/or are used, for profiling the OpenGL calls, or for call-stack tracing during a drawing operation.

Each extension function wrapper is effectively one of two forms. For functions not returning a value,

void GTglFunction (type0 param0, type1 param1, ...)
{

GT_ENTER_FUNCTION(glFunction);
if (glFunction)
{

GT_NONNULL_FUNCTION(glFunction);
glFunction(param0,param1,...);

}
else
{

GT_NULL_FUNCTION(glFunction);
}
GT_EXIT_FUNCTION(glFunction);

}

18

For functions returning a value,

rettype GTglFunction (type0 param0, type1 param1, ...)
{

rettype tResult;
GT_ENTER_FUNCTION(glFunction);
if (glFunction)
{

GT_NONNULL_FUNCTION(glFunction);
tResult = glFunction(param0,param1,...);

}
else
{

GT_NULL_FUNCTION(glFunction);
tResult = nullRetValue;

}
GT_EXIT_FUNCTION(glFunction);
return tResult;

}

The default behavior is determined by the macros starting with GT and are defined by the preprocessor to
expand to nothing. You can implement the macros as desired to support your development environment. For
example, profiling amounts to using a timer and starting the timer in GT ENTER FUNCTION and stopping the
timer in GT EXIT FUNCTION. Call-stack tracing amounts to reporting the function being entered and exited
by use of these same macros.

To add new behavior, you must re-implement the preprocessor definitions in the file GTglPlugin.h and add
the implementations to the source file, GTglPlugin.cpp.

2.1.9 NVIDIA’s Cg Toolkit

If you are going to write shader programs to be used by Wild Magic, you need to have NVIDIA’s Cg Toolkit
installed. You can download this from NVIDIA’s web site. We had downloaded Version 1.1 of the toolkit,
but are now using Version 1.4. A couple of Cg shader programs have not correctly compiled with 1.4, so in
those cases we compiled using 1.1. In particular, the VertexNoise, ProjectedTexture, and Charcoal Cg
programs from Wild Magic Version 3 did not compile correctly. In Wild Magic Version 4, we also ran into a
problem with the ShadowMaps sample application using the ps 2 0 profile for the p ShadowMap pixel shader.
Specifically, we had

if (fPointDepth > kDepth.r + 0.01f)
{

// in shadow
// pixelcolor = (0,0,0,basecolor.a)

}
else
{

// not in shadow

19

http://www.nvidia.com

// pixelcolor = basecolor
}

The compiled code for OpenGL worked. The DirectX code had the shadow and not-in-shadow colors reversed.
After changing the > to >=, the compiled code worked fine for both OpenGL and DirectX.

For convenience of compiling shaders from a command window, we have provided some simple batch files in
folder GeometricTools/WildMagic4/Bin,

GLVProgram.bat // OpenGL vertex programs, profile arbvp1
GLPProgram.bat // OpenGL pixel programs, profile arbfp1
DXVProgram.bat // DirectX vertex programs, profile vs_2_0
DXPProgram.bat // DirectX pixel programs, profile ps_2_0

Some low-end graphics hardware cannot handle these shader models. In those cases, you might try compiling
the Cg programs with a less powerful profile.

We use the naming convention v ProgramName for vertex programs and p ProgramName for pixel programs.
If these are implemented in a file, ProgramName.cg, the syntax for the batch files is

GLVProgram ProgramName ProgramName // output: v_ProgramName.ogl.wmsp
GLPProgram ProgramName ProgramName // output: p_ProgramName.ogl.wmsp
DXVProgram ProgramName ProgramName // output: v_ProgramName.dx9.wmsp
DXPProgram ProgramName ProgramName // output: v_ProgramName.dx9.wmsp

The first parameter of the batch file is the shader program name. The second parameter of the batch file is the
output program name (with v or p prepended). These names are not necessarily the same; for example,
look at ProjectedShadow.cg in the ShadowMaps sample application. The compiled shader programs for
OpenGL were generated by

GLVProgram ProjectedDepth ProjectedShadow
GLPProgram ProjectedDepth ProjectedShadow
GLVProgram ShadowMap ProjectedShadow
GLPProgram ShadowMap ProjectedShadow

The .wmsp shader programs for the software renderer were all manually created by translating the Cg code
to C++ code. The VS2 and PS2 shader programs fail on our laptop test machine that has an ATI Mobility
Radeon 9000 (which supports only OpenGL 1.3). All but a small number of the shader programs will compile
using VS1.1 and PS1.1, the exceptions occurring in a few of the more advanced sample applications. The
directory

GeometricTools/WildMagic4/Data/WmspVS11PS11

has a zip file whose contents may be used to overwrite the compiled shader programs in the Data/Wmsp
directory.

20

2.2 Linux

We currently use Red Hat Fedora Core 9 with g++ version 4.3.0.

The Cg Toolkit from NVIDIA is available now for Red Hat Linux. You can download this from NVIDIA’s
web site. We have compiled all the Cg programs on a Microsoft Windows machine.

2.3 Macintosh

We are now running Mac OS X (10.5.4) using Xcode 3.0 on a 64-bit Power Mac G5. The code used to run
on a 32-bit Power Mac G4, but we no longer have that machine to test on.

The Cg Toolkit from NVIDIA is available now for the Macintosh. You can download this from NVIDIA’s
web site. We have compiled all the Cg programs on a Microsoft Windows machine.

2.4 Platform Differences

Platform differences are encapsulated in a small number of files. Inclusion of files or portions of files is
controlled by preprocessor defines. In the core engine itself, the files

GeometricTools\WildMagic4\LibFoundation\System\Wm4Platforms.h
GeometricTools\WildMagic4\LibFoundation\System\Wm4System.cpp

encapsulate some basic system operations that are platform specific. The interface files

GeometricTools\WildMagic4\LibFoundation\System\Wm4System.{h,inl}

are platform independent.

The Microsoft Windows platform requires that the preprocessor symbol WIN32 be defined. The Microsoft
compilers already defines this, so you do not need to add a define to the project settings. The Macintosh
platform requires that APPLE be defined. Xcode automatically defines this, so you do not need to add a
define to the project settings. MINGW automatically defines MINGW and Cygwin automatically defines
CYGWIN ; the Wm4Platforms.h file uses these defines to enable some code. As more platforms are added,

the preprocessor mechanism in Wm4Platforms.h must be modified.

3 Compiling the Distribution

The method for compiling the libraries and applications depends on which platform you are working on.
If you plan on installing the source code on only one platform, you need only read the subsection related
to that platform. Each platform has scripts to automatically compile the distribution. If you choose to
manually compile the distribution, you must compile the Foundation, Imagics, Graphics, Physics, Renderer,
and Application projects in this order. The specific details for this are given in the following sections.

21

http://www.nvidia.com
http://www.nvidia.com
http://www.nvidia.com
http://www.nvidia.com

3.1 Microsoft Windows 7, Windows Vista, or Windows XP with Visual Studio

If you plan on using Microsoft DirectX for your renderer API, you must have the DirectX SDK installed
before building the Wild Magic distribution. You can download the SDK from Microsoft’s web site. We
have tested the distribution using the DirectX SDK (November 2007) release. If you plan to use OpenGL
for your renderer API, there are no prerequisites. Wild Magic has its own OpenGL extension wrapper and
does not use GLUT.

3.1.1 Automatic Compilation

Automatic compilation is supported by the following executable

GeometricTools/WildMagic4/Wm4Installer.exe

This program requires various command-line parameters. Open a command window, change directory to the
WildMagic4 directory, and run the program without parameters. You will see the following output, where X
is whatever drive you have unzipped the distribution to.

X:\GeometricTools\WildMagic4>Wm4Installer.exe
The Wild Magic Installer must be executed from the WildMagic4 folder in
the GeometricTools distribution. The usage is:

Wm4Installer
-m [msvc71, msvc80, msvc80e, msvc90, msvc90e]
-g [opengl, directx, soft]
-c [debug, debugdll, debugmem, release, releasedll, releasemem]

All options are required. For example, to use Microsoft Visual C++ 9.0,
OpenGL, static libraries, and release mode, you must execute:

Wm4Installer -m msvc90 -g opengl -c release
The compiler location is looked up in the Windows Registry. If it cannot
be found, the installer will display a message to that effect.

Use the option msvc80 for the professional version of Visual Studio .NET 2005. Use msvc80e for the
freely available version Visual C++ 2005 Express Edition. Use the option msvc90 for the professional
version of Visual Studio .NET 2008. Use msvc90e for the freely available version Visual C++ 2008 Express
Edition. A log file named Wm4Installer.log is created with the starting and ending times for compiling
the configuration you selected. The compiler output is sent to the command window. To redirect this to a
file for later browsing use, for example,

Wm4Installer -m msvc90 -g opengl -c release 2>&1 > Log_90_ogl_rel.txt

The operator 2> is a redirection of stderr (standard error) to another file. In the current case, the redirection
is to &1, which is stdout (standard out). That is, stdout now contains regular output as well as error output.
The final redirection operator is >, which says to redirect stdout to the specified file.

The installer program compiles only the Foundation, Imagics, Graphics, Physics, Renderers, Application
libraries, and the sample applications. The tools need to be compiled separately, because some of them
require other packages to be installed.

22

3.1.2 Manual Compilation

Should you choose to build the projects one at a time using Microsoft Visual Studio, please note that the
sample applications and tools depend on other libraries being built first. These libraries perform post-build
copies of header files to the folder

GeometricTools/WildMagic4/SDK/Include

and library files to the subfolders of

GeometricTools/WildMagic4/SDK/Library

The sample applications rely on files to be in these folders.

Build the following projects in order. The paths listed are relative to the top-level folder

GeometricTools/WildMagic4

The xx string is in (71,80,90).

// The foundation on which everything depends.
LibFoundation/LibFoundation_VCxx.vcproj

// The platform-independent image processing library.
// Needs LibFoundation.
LibImagics/LibImagics_VCxx.vcproj

// The platform-independent graphics library and scene graph management.
// Needs LibFoundation.
LibGraphics/LibGraphics_VCxx.vcproj

// The platform-independent physics library.
// Needs LibFoundation.
LibPhysics/LibPhysics_VCxx.vcproj

// The Direct3D renderer library.
// Needs LibFoundation and LibGraphics.
Renderers/Dx9Renderer/Dx9Renderer_VCxx.vcproj

// The OpenGL renderer library.
// Needs LibFoundation and LibGraphics.
Renderers/OpenGLRenderer/WglRenderer_VCxx.vcproj

// The software renderer library.
// Needs LibFoundation and LibGraphics.
Renderers/SoftRenderer/WinSoftRenderer_VCxx.vcproj

23

// The Direct3D-renderer application library.
// Needs LibFoundation, LibGraphics, LibPhysics, and Dx9Renderer.
Applications/Dx9Application_VCxx.vcproj

// The OpenGL-renderer application library.
// Needs LibFoundation, LibGraphics, LibPhysics, and WglRenderer.
Applications/WglApplication_VCxx.vcproj

// The software-renderer application library.
// Needs LibFoundation, LibGraphics, LibPhysics, and WinSoftRenderer.
Applications/WglApplication_VCxx.vcproj

After you have built these libraries, you can build any sample application. The tools also require these
libraries to be built first, but some tools have additional prerequisites. See the tools section of this document
for details.

3.1.3 Build Configurations

The foundation, renderer, and application libraries each have 7 different build configurations named as
shown.

Debug
Debug DLL
Debug Memory
Release
Release DLL
Release Memory
NoPCH

The libraries are stored in appropriately named subdirectories of GeometricTools/WildMagic4/Library.

The three configurations containing Debug link to the “Multi-threaded Debug DLL” run-time libraries pro-
vided by the compilers. The three configurations containing Release link to the “Multi-threaded DLL”
run-time libraries.

The Debug, Debug Memory, Release, and Release Memory configurations produce static libraries.

The Debug DLL and Release DLL configurations produce dynamic libraries for the foundation and renderer
libraries, but static application libraries. The application libraries implement the entry function main,
which cannot be shared. However, the application libraries built with the Debug DLL and Release DLL
configurations do use the dynamic foundation and renderer libraries.

The two configurations containing Memory differ from their static-library counterparts only in that they define
the preprocessor symbol WM4 MEMORY MANAGER. This enables run-time memory checking to trap memory leaks.
Any application with memory checking enabled will produce a report on termination, stored in the text files
MemoryReportDebug.txt or MemoryReportRelease.txt.

The previously mentioned configurations all use a precompiled header system. Although leading to faster
compilation, such systems can hide circular dependencies and implicit dependencies in header files. The

24

configuration NoPCH does not use the precompiled header system. We use this only to catch problems with
circular and implicit dependencies that usually manifest themselves by failure to compile successfully.

The sample applications each have 18 different build configurations named as shown.

Dx9 Debug, Sft Debug, Wgl Debug,
Dx9 Debug DLL, Sft Debug DLL, Wgl Debug DLL,
Dx9 Debug Memory, Sft Debug Memory, Wgl Debug Memory,
Dx9 Release, Sft Release, Wgl Release,
Dx9 Release DLL, Sft Release DLL, Wgl Release DLL,
Dx9 Release Memory, Sft Release Memory, Wgl Release Memory

The six prefixed with Dx9 use the DirectX renderer, the six prefixed with Sft use the software renderer,
and the six prefixed with Wgl use the OpenGL renderer. When you build a project manually, it is your
responsibility to select the build configuration that you desire. If you have built only the Debug foundation,
renderer, and application libraries, and then try to build the Dx9 Debug DLL configuration for a sample, you
will get linker errors.

Some samples are console applications, which do not require a renderer. It is possible to create yet another
application-library type just for console applications, but we did not in order to simplify the automatic
compiling program. The Wm4Installer.exe program will iterate through the subdirectories of a Samples
directory, open the project file, and compile the selected configuration. The introduction of a console
application library would require us to hard-code into the installer a list of projects that are window-based
and a list of projects that are console-based. Each new sample added to the distribution would require
updating the installer program. By embedding the console support into the renderer-specific application
libraries, we (and you) can simply add new samples that the installer will automatically compile.

3.1.4 Precompiled Headers

Wild Magic Version 4 uses the precompiled header system provided by the compilers. The precompiled header
files are of the form Wm4FooBarPCH.h and the creation source files are of the form Wm4FooBarPCH.cpp.

The preprocessor symbols now include WM4 USE PRECOMPILED HEADERS. If you want to disable the precom-
piled header sytem:

1. Remove WM4 USE PRECOMPILED HEADERS from the preprocessor definitions in the build configuration of
interest.

2. For the Wm4FooBarPCH.cpp files, change the “Create/Use Precompiled Header” option from Create
Precompiled Header (/Yc) to Not Using Precompiled Headers.

3. For all other source files, change the “Create/Use Precompiled Header” option from Use Precompiled
Header (/Yu) to Not Using Precompiled Headers.

You should be aware that in exchange for faster compilation using precompiled headers, you might get
cryptic error messages, you risk having circular headers if you are not careful (these will not compile when
precompiled headers are disabled), and sometimes multiple builds are required for unknown reasons. Also,
if you are not careful about adding include directives in your source files, those files might not compile when

25

precompiled headers are turned off. Our measurements of the precompiled header builds showed a 25%
reduction in compile time.

3.1.5 Naming of the Executables

The sample executables are created in their project directories. The name of the executable stores the
compiler version, the renderer type, and the configuration type. For example,

SampleGraphics\BillboardNodes\Billboard_VC90WglDebSta.exe
SampleGraphics\BillboardNodes\Billboard_VC90Dx9RelDyn.exe
SampleGraphics\BillboardNodes\Billboard_VC90WglRelMem.exe

The first executable uses OpenGL and is linked to the debug static libraries (Debug configuration). The
second executable uses DirectX and is linked to the release dynamic libraries (Release DLL configuration).
The third executable uses OpenGL and is linked to the release memory-checking libraries (Release Memory
configuration).

3.1.6 Running the Samples Based on Dynamic Libraries

In order to run the dynamic library versions of the samples, the dynamic libraries (DLLs) themselves must
be found for loading. You can always copy the DLLs to the executable directory or to the Windows system
directory, but we prefer adding some environment variables and modifying the PATH environment variable.
See Section 1.6 for details.

3.2 Microsoft Windows 7, Windows Vista, or Windows XP and MINGW or
CYGWIN

We have formal support for compiling using Minimalist GNU for Windows (MINGW) and using the envi-
ronment provided by Minimal System (MSYS). Both packages are freely downloadable. Specifically, we have
compiled and tested using the versions MINGW 4.1.0 and MSYS 1.0.10. We also have formal support for
compiling using Cygwin. We have compiled and tested using Cygwin 1.5.21_1.

3.2.1 Automatic Compilation

After installing these packages to drive X of some machine, modify the file X:\msys\1.0\etc\fstab to
contain

X:/mingw /mingw
Y:/GeometricTools/WildMagic4 /WildMagic4

where Y is the drive on which Wild Magic installed (assuming you installed Wild Magic to the root). To
start the compilation process, open an MSYS terminal window via the shortcut link set up on the Windows
Desktop by the installer, change directory to /WildMagic, and execute the make file.

26

http://www.mingw.org
http://www.cygwin.com

make -f makefile.wm4 CFG={config} SYS=mingw, GRF={graphics}

where config is one of (Debug,Release,DebugMemory,ReleaseMemory) and graphics is one of (OpenGL,Soft).
For example, to build the Debug configuration using the OpenGL renderer,

make -f makefile.wm4 CFG=Debug SYS=mingw GRF=OpenGL

3.2.2 Manual Compilation

It is possible to compile the projects manually, one at a time. The order of project builds is

LibFoundation
LibImagics
LibGraphics
LibPhysics

// for OpenGL rendering
LibRenderers/OpenGLRenderer (WGL renderer)
LibApplications/OpenGLApplication (WGL application)

// for software rendering
LibRenderers/SoftRenderer (WinSoft renderer)
LibApplications/SoftApplication (WinSoft application)

The syntax for compiling a project is easily inferred by reading the make files. After the core libraries are
built, you may build any sample application.

3.3 Linux

We currently use Red Hat Fedora Core 9 with g++ version 4.3.0.

3.3.1 Automatic Compilation

Wild Magic is compiled by using the make file in the GeometricTools/WildMagic4 directory.

make -f makefile.wm4 CFG={config} SYS=linux, GRF={graphics}

where config is one of (Debug,Release,DebugMemory,ReleaseMemory) and graphics is one of (OpenGL,Soft).
For example, to build the Debug configuration using the OpenGL renderer,

make -f makefile.wm4 CFG=Debug SYS=linux GRF=OpenGL

27

3.3.2 Manual Compilation

It is possible to compile the projects manually, one at a time. The order of project builds is

LibFoundation
LibImagics
LibGraphics
LibPhysics

// for OpenGL rendering
LibRenderers/OpenGLRenderer (GLX renderer)
LibApplications/OpenGLApplication (GLX application)

// for software rendering
LibRenderers/SoftRenderer (XSoft renderer)
LibApplications/SoftApplication (XSoft application)

The syntax for compiling a project is easily inferred by reading the make files. After the core libraries are
built, you may build any sample application.

3.4 Macintosh

The Macintosh distribution comes with support for Apple’s Xcode 3.0 running on Macintosh OS X 10.5.4.
We have no support for Metrowerks CodeWarrior.

It is essential that you configure Xcode’s Building settings in the following manner. From the menu bar with
Xcode active, select

Xcode | Preferences...

then select the Buildings icon. You need to check the radio button for

Put build products in project directory

You also need to check the radio button for

Put intermediate build files with build products

The Foundation file Wm4System.cpp has a function named GetPath for changing the current directory to
the project directory in order that relative paths to application input data are correct. This function has a
preprocessor define WM4 USE XCODE2, which is enabled. If you are still using Xcode 1.5, you need to comment
out the define in order for the relative path system to work.

3.4.1 Automatic Compilation

We have provided a shell script, MacBuildWm4.sh, to allow you to build the distributions from a Terminal
window. Launch a Terminal window and change directory to the location of the Wild Magic distribution.

28

On our Macintosh, we placed the distribution in a user directory,

Mac:~/GeometricTools/WildMagic4

Make sure the script has executable permissions. You can set the permissions from a terminal window,

chmod 755 MacBuildWm4.sh

The Foundation, Graphics, Physics, Renderer, and Application projects also use scripts to do post-build
copies of headers and libraries. These are in the directories

GeometricTools/WildMagic4/LibFoundation
GeometricTools/WildMagic4/LibImagics
GeometricTools/WildMagic4/LibGraphics
GeometricTools/WildMagic4/LibPhysics
GeometricTools/WildMagic4/LibRenderers/OpenGLRenderer
GeometricTools/WildMagic4/LibRenderers/SoftRenderer
GeometricTools/WildMagic4/LibApplications/OpenGLApplication
GeometricTools/WildMagic4/LibApplications/SoftApplication

The script names are

CopySdkDebugStatic.sh
CopySdkDebugDynamic.sh
CopySdkDebugMemory.sh
CopySdkReleaseStatic.sh
CopySdkReleaseDynamic.sh
CopySdkReleaseMemory.sh

Also make sure the scripts have executable permissions by using chmod.

The syntax for compiling is

./MacBuildWm4.sh graphics config libtype buildtype

where graphics is one of (Agl,Soft), config is one of (Debug,Release), libtype is one of (Static,Dynamic),
and buildtype is one of (build,clean). The script executes the command-line version of Xcode, namely,
xcodebuild. For example, to build the projects for OpenGL rendering, release configuration, and dynamic
libraries, you would use

./MacBuildWm4.sh Agl Release Dynamic build

3.4.2 Manual Compilation

If you choose to build the projects manually, they must be built in the following order. The path is relative
to GeometricTools/WildMagic4. It is possible to compile the projects manually, one at a time. The order
of project builds is

29

LibFoundation
LibImagics
LibGraphics
LibPhysics

// for OpenGL rendering
LibRenderers/OpenGLRenderer (AGL renderer)
LibApplications/OpenGLApplication (AGL application)

// for software rendering
LibRenderers/SoftRenderer (MacSoft renderer)
LibApplications/SoftApplication (MacSoft application)

After these libraries are built, you can build any sample or tool.

4 Sample Applications

The sample applications are described at the Geometric Tools web site. Each application has its own page
with links to the source code, documentation, and related references. Screen captures are also shown at
those pages.

5 Tools

A brief discussion of the utility tools is given in this section. These projects are found in

GeometricTools/WildMagic4/ToolUtility

Some of the tools are Microsoft Windows only. Each subsection mentions the platforms on which the tools
will run.

The import/export tools are no longer available. Some were not ported to the WM4 track and others are
simply out of date and not fully featured. We were working on a COLLADA importer, hoping to benefit
from the work of others who are writing COLLADA exporters for the various 3D modeling packages, but
that is on hold due to lack of spare time.

5.1 BitmapFontCreator

Runs on Windows.

This is what we used to create the bitmap font for text in the OpenGL renderers. Specifically, the program
creates the source file Wm4OpenGLVerdanaS16B0I0.cpp for the Verdana font. You may modify the program
to create source files for other fonts. However, you should do so only for fonts that are freely usable or have
been licensed by you.

30

http://www.geometrictools.com/

5.2 Bmp24ToWmif

Runs on Windows.

The program is a converter from Windows BITMAP format (bmp) to the Wild Magic image format (wmif).
The usage is

Bmp24ToWmif myfile.bmp [myfile.alpha.bmp]

The input bitmaps must be 24-bit RGB. The output file is myfile.wmif. If you supply only myfile.bmp,
the output is a 24-bit RGB image in the wmif format. To provide an alpha channel, you supply the second
file, myfile.alpha.bmp, which must be 24-bit, but only the red channel is used as the alpha value. The
output file is a 32-bit RGBA image in the wmif format.

5.3 CreateNormalMap

Runs on Windows.

The program takes a 24-bit RGB Windows BITMAP and creates a gray-scale image and a normal map for
use in bumpmapping. A sample image, Brick.bmp, and its output files are included with the distribution to
illustrate what the program does.

5.4 GenerateProjects

Runs on Windows.

This program generates VC80, VC90, and Xcode 3.0 project files. We have embedded the project-template
code in the executable. This program saves you the pain of having to manually edit new project files.

5.5 ScenePrinter

Runs on Windows, Linux, Macintosh.

This is a converter that processes a Wild Magic object file (wmof) and produces an ASCII representation.

5.6 Wm4Installer

The program runs on Windows. This is the source code for the executable that automatically compiles Wild
Magic 4 from a command window.

5.7 WmifToBmp24

Runs on Windows.

31

The program is a converter from the Wild Magic image format (wmif) to the Windows BITMAP format
(bmp). The usage is

WmifToBmp24 myfile.wmif

If the wmif file is RGB888, the output file is a 24-bit bmp image named myfile.bmp. If the wmif file is
RGBA8888, two output files are generated. The file myfile.bmp is a 24-bit BITMAP image that contains
the RGB portion of myfile.wmif. The file myfile.alpha.bmp is also a 24-bit BITMAP image, is gray scale
(R = G = B), and contains the A portion of myfile.wmif. The converter only supports Wild Magic RGB888
and RBGA8888 for now.

5.8 WmifViewer

The program runs on Windows. It is a viewer for the wmif image files in Wild Magic. Quite a few image
formats are now supported, including 16-bit and 32-bit floating-point formats. The viewer will display these.

6 Updates and Known Problems

Any updates (bug fixes, new features, new documentation) and any known problems are maintained at the
Geometric Tools web site. At that site, select the Downloads tab. The links to the updates and to the known
problems are on that page.

32

http://www.geometrictools.com/

	1 Introduction
	1.1 About This Document
	1.2 Copying the Distribution to Your Machine
	1.3 Environment Variables
	1.3.1 Microsoft Windows 7 and Windows Vista
	1.3.2 Microsoft Windows XP
	1.3.3 Linux
	1.3.4 Macintosh

	1.4 Automatic Builds
	1.4.1 Microsoft Windows 7, Windows Vista, and Windows XP
	1.4.2 Linux, Mingw, and Cygwin
	1.4.3 Macintosh

	1.5 Compiler Support for Windows Dynamic Link Libraries
	1.6 Finding Windows Dynamic Link Libraries at Run-Time

	2 Prerequisites and Portability
	2.1 Microsoft Windows 7, Windows Vista, Windows XP
	2.1.1 Microsoft Visual Studio .NET 2003 (VC71)
	2.1.2 Microsoft Visual Studio .NET 2005 (VC80)
	2.1.3 Microsoft Visual Studio .NET 2008 (VC90)
	2.1.4 MinGW
	2.1.5 Cygwin
	2.1.6 Borland C++ Builder and Intel Compilers
	2.1.7 DirectX
	2.1.8 OpenGL and Extension Wrappers
	2.1.9 NVIDIA's Cg Toolkit

	2.2 Linux
	2.3 Macintosh
	2.4 Platform Differences

	3 Compiling the Distribution
	3.1 Microsoft Windows 7, Windows Vista, or Windows XP with Visual Studio
	3.1.1 Automatic Compilation
	3.1.2 Manual Compilation
	3.1.3 Build Configurations
	3.1.4 Precompiled Headers
	3.1.5 Naming of the Executables
	3.1.6 Running the Samples Based on Dynamic Libraries

	3.2 Microsoft Windows 7, Windows Vista, or Windows XP and MINGW or CYGWIN
	3.2.1 Automatic Compilation
	3.2.2 Manual Compilation

	3.3 Linux
	3.3.1 Automatic Compilation
	3.3.2 Manual Compilation

	3.4 Macintosh
	3.4.1 Automatic Compilation
	3.4.2 Manual Compilation

	4 Sample Applications
	5 Tools
	5.1 BitmapFontCreator
	5.2 Bmp24ToWmif
	5.3 CreateNormalMap
	5.4 GenerateProjects
	5.5 ScenePrinter
	5.6 Wm4Installer
	5.7 WmifToBmp24
	5.8 WmifViewer

	6 Updates and Known Problems

